Come formare un’equazione di secondo grado senza intercetta

Scuola

Come formare un’equazione di secondo grado senza intercetta

Il numero di intercetta di un’equazione quadratica è determinata dal valore del suo discriminante. Se il discriminante è maggiore di zero, la funzione ha due intercetta, se è esattamente zero, ha un’intercetta; se è inferiore a zero, non ha intercetta. Formare un’equazione di secondo grado senza intercetta, scegliendo valori di A, B e C in Ax ^ 2 + Bx + C = 0 che producono un valore negativo per il discriminante B ^ 2 – 4ac.

Istruzioni

1. Scegliere un valore di A nell’equazione per un’equazione di secondo grado Ax ^ 2 + Bx + C. “A” è il coefficiente principale, in modo che la parabola si aprirà in alto se A è positivo e in basso se A è negativo.

2. Scegliere un valore di B per l’equazione. Il valore di B determina la coordinata x del vertice della parabola così come il suo asse di simmetria. La formula per questa coordinata è x =-B / 2A. Ad esempio, se si ha B uguale a -4, l’asse di simmetria sarà la linea x = 1.

3.

Inserire i valori di A e B nella formula di una discriminante: B ^ 2 – 4ac <0. Nell'esempio precedente, A = 2 e B = -4, quindi la formula diventa 16 – 8C <0.

4. Scegliere un valore di C che soddisfa la disuguaglianza dal punto 3. L'insieme di valori di C che soddisfano l'ineguaglianza 16 – 8C 2, così C = 3 è un valore accettabile.

5. Costruire l’equazione quadratica Ax ^ 2 + Bx + C = 0 utilizzando i valori di A, B e C che avete scelto. L’equazione nell’esempio di cui sopra è 2x ^ 2 – 4x + 3 = 0.

Commenta per primo

Lascia un commento

L'indirizzo email non sarà pubblicato.


*


Leggi anche